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This paper shows how to construct directly the local conservation laws for
essentially any given DE system. This comprehensive treatment is based on
first finding conservation law multipliers. It is clearly shown how this treatment
is related to and subsumes the classical Noether’s theorem (which only holds for
variational systems). In particular, multipliers are symmetries of a given PDE
system only when the system is variational as written. The work presented in
this paper amplifies and clarifies earlier work by the first and third authors.

1 Introduction

A conservation law of a non-degenerate DE system is a divergence expression that
vanishes on all solutions of the DE system. In general, any such nontrivial expres-
sion that yields a local conservation law of a given DE system arises from a linear
combination formed by local multipliers (characteristics) with each DE in the sys-
tem, where the multipliers depend on the independent and dependent variables
as well as at most a finite number of derivatives of the dependent variables of the
given DE system. It turns out that a divergence expression depending on inde-
pendent variables, dependent variables and their derivatives to some finite order
is annihilated by the Euler operators associated with each of its dependent vari-
ables; conversely, if the Euler operators, associated with each dependent variable
in an expression involving independent variables, dependent variables and their
derivatives to some finite order, annihilate the expression, then the expression is
a divergence expression. From this it follows that a given DE system has a local
conservation law if and only if there exists a set of local multipliers whose scalar
product with each DE in the system is identically annihilated without restrict-
ing the dependent variables in the scalar product to solutions of the DE system,
i.e., the dependent variables, as well as each of their derivatives, are treated as
arbitrary functions.
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Thus the problem of finding local conservation laws of a given DE system
reduces to the problem of finding sets of local multipliers whose scalar product
with each DE in the system is annihilated by the Euler operators associated with
each dependent variable where the dependent variables and their derivatives in
the given DE system are replaced by arbitrary functions. Each such set of local
multipliers yields a local conservation law of the given DE system. Moreover, for
any given set of local conservation law multipliers, there is an integral formula to
obtain the fluxes of the local conservation law [1–3]. Often it is straightforward to
obtain the conservation law by direct calculation after its multipliers are known [4].
What has been outlined here is the direct method for obtaining local conservation
laws.

For a given DE system, Lie’s algorithm yields an over-determined set of linear
determining equations whose solutions yield local symmetries. This set of linear
PDEs arises from the linearization of the given DE system (Fréchet derivative)
about an arbitrary solution of the given DE system, i.e., the resulting set of linear
PDEs must hold for each solution of the given DE system. After the given DE
system and its differential consequences are substituted into its linearization, the
resulting linear PDE system yielding local symmetries must hold with the remain-
ing dependent variables and their derivatives of the given DE system replaced by
arbitrary functions.

In contrast, for a given DE system, sets of local conservation law multipliers are
solutions of an over-determined set of linear determining equations arising from
annihilations by Euler operators. It turns out that the set of linear multiplier
determining equations for local conservation law multipliers includes the adjoint
of the set of linear PDEs arising from the linearization of the given PDE system
about an arbitrary solution of the given DE system [1].

It follows that in the situation when the set of linearized equations of a given
DE system (Fréchet derivative) is self-adjoint, the set of multiplier determining
equations includes the set of local symmetry determining equations. Consequently,
here each set of local conservation law multipliers yields a local symmetry of the
given DE system. In particular, the local conservation law multipliers are also
components of the infinitesimal generators of local symmetries in evolutionary
form. However, in the self-adjoint case, the set of linear determining equations
for local conservation law multipliers is more over-determined than those for local
symmetries since here the set of linear determining equations for local conservation
law multipliers includes additional linear PDEs as well as the set of linear PDEs
for local symmetries. Consequently, in the self-adjoint case, there can exist local
symmetries that do not yield local conservation law multipliers.

Noether [5] showed that if a given system of DEs admits a variational principle,
then any one-parameter Lie group of point transformations that leaves invariant
the action functional yields a local conservation law. In particular, she gave an
explicit formula for the fluxes of the local conservation law. Noether’s theorem
was extended by Bessel-Hagen [6] to allow the one-parameter Lie group of point
transformations to leave invariant the action functional to within a divergence
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term. As presented, their results depend on Lie groups of point transformations
used in their canonical form, i.e., not in evolutionary form. Boyer [7] showed
how all such local conservation laws could be obtained from Lie groups of point
transformations used in evolutionary form. From this point of view, it is straight-
forward to apply Noether’s theorem to obtain a local conservation law for any
for any one-parameter higher-order local transformation leaving invariant the ac-
tion functional to within a divergence term. Such a higher-order transformation
that leaves invariant an action functional to within a divergence term is called a
variational symmetry.

As might be expected, Noether’s explicit formula for a local conservation law
arises from sets of local multipliers that yield components of local symmetries in
evolutionary form. From this point of view, it follows that all local conservation
laws arising from Noether’s theorem are obtained by the direct method. Moreover,
one can see that a variational symmetry must map an extremal of the action
functional to another extremal. Since an extremal of an action functional is a
solution of the DE system arising from the variational principle, it follows that a
variational symmetry must be a local symmetry of the given DE system arising
from the variational principle.

A system of DEs (as written) has a variational principle if and only if its
linearized system (Fréchet derivative) is self-adjoint [8–10]. From this point of
view, it also follows that all conservation laws obtained by Noether’s theorem
must arise from the direct method.

The direct method supersedes Noether’s theorem. In particular, for Noether’s
theorem, including its generalizations by Bessel-Hagen and Boyer, to be directly
applicable to a given DE system, the following must hold:

• The linearized system of the given DE system is self-adjoint.

• One has an explicit action functional.

• One has a one-parameter local transformation that leaves the action func-
tional invariant to within a divergence. In order to find such a variational
symmetry systematically, one first finds local symmetries (solutions) of the
linearized system and then checks whether or not such local symmetries
leave the action functional invariant to within a divergence.

On the other hand, the direct method is applicable to any given DE system,
whether or not its linearized system is self-adjoint. No functional needs to be
determined. Moreover, a set of local conservation law multipliers is represented
by any solution of an over-determined linear PDE system satisfied by the mul-
tipliers and this over-determined linear PDE system is obtained directly from
the given DE system. As mentioned above, in the case when the linearized sys-
tem is self-adjoint, the local symmetry determining equations are a subset of this
over-determined linear PDE system.

In the study of DEs, conservation laws have many significant uses. They de-
scribe physically conserved quantities such as mass, energy, momentum and an-
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gular momentum, as well as charge and other constants of motion. They are
important for investigating integrability and linearization mappings and for es-
tablishing existence and uniqueness of solutions. They are also used in stability
analysis and the global behavior of solutions. In addition, they play an essential
role in the development of numerical methods and provide an essential starting
point for finding potential variables and nonlocally related systems. In particu-
lar, a conservation law is fundamental in studying a given DE in the sense that
it holds for any posed data (initial and/or boundary conditions). Moreover, the
structure of conservation laws is coordinate-independent since a point (contact)
transformation maps a conservation law to a conservation law.

The rest of this paper is organized as follows. In Section 2, the direct method is
presented with a nonlinear telegraph system and the Korteweg-de Vries equation
used as examples. Noether’s theorem is presented in Section 3. In Section 4,
there is a discussion of the limitations of Noether’s theorem and the consequent
advantages of the direct method.

2 The direct method

Consider a system R{x ; u} of N differential equations of order k with n indepen-
dent variables x = (x1,..., xn) and m dependent variables u(x) = (u1(x),..., um(x)),
given by

Rσ[u] = Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (1)

Definition 2.1. A local conservation law of the DE system (1) is a divergence
expression

DiΦi[u] = D1Φ1[u] + . . . + DnΦn[u] = 0 (2)

holding for all solutions of the DE system (1).
In (2), Di and Φi[u] = Φi(x, u, ∂u, . . . , ∂ru), i = 1, . . . , n, respectively are total

derivative operators and the fluxes of the conservation law.

Definition 2.2. A DE system R{x ; u} (1) is non-degenerate if (1) can be written
in Cauchy-Kovalevskaya form [3, 10] after a point (contact) transformation, if
necessary.

In general, for a given non-degenerate DE system (1), nontrivial local conser-
vation laws arise from seeking scalar products that involve linear combinations of
the equations of the DE system (1) with multipliers (factors) that yield nontrivial
divergence expressions. In seeking such expressions, the dependent variables and
each of their derivatives that appear in the DE system (1) or in the multipliers,
are replaced by arbitrary functions. Such divergence expressions vanish on all
solutions of the DE system (1) provided the multipliers are non-singular.
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In particular a set of multipliers {Λσ[U ]}N
σ=1 = {Λσ(x, U, ∂U, . . . , ∂lU)}N

σ=1

yields a divergence expression for the DE system R{x ; u} (1) if the identity

Λσ[U ]Rσ[U ] ≡ DiΦi[U ] (3)

holds for arbitrary functions U(x). Then on the solutions U(x) = u(x) of the DE
system (1), if Λσ[u] is non-singular, one has a local conservation law

Λσ[u]Rσ[u] = DiΦi[u] = 0.

[A multiplier Λσ[U ] is singular if it is a singular function when computed on
solutions U(x) = u(x) of the given DE system (1) (e.g., if Λσ[U ] = F [U ]/Rσ[U ]).
One is only interested in non-singular sets of multipliers, since the consideration
of singular multipliers can lead to arbitrary divergence expressions that are not
conservation laws of a given DE system.]

Definition 2.3. The Euler operator with respect to Uµ is the operator defined
by

EUµ =
∂

∂Uµ
−Di

∂

∂Uµ
+ . . . + (−1)sDi1 · · ·Dis

∂

∂Uµ
i1...is

+ . . . . (4)

By direct calculation, one can show that the Euler operators (4) annihilate
any divergence expression DiΦi(x,U, ∂U, . . . , ∂rU) for any r. In particular, the
following identities hold for arbitrary U(x):

EUµ(DiΦi(x,U, ∂U, . . . , ∂rU)) ≡ 0, µ = 1, . . . , m.

It is straightforward to show that the converse also holds. Namely, the only
scalar expressions annihilated by Euler operators are divergence expressions. This
establishes the following theorem.

Theorem 2.1. The equations EUµF (x,U, ∂U, . . . , ∂sU) ≡ 0, µ = 1, . . . , m hold
for arbitrary U(x) if and only if F (x,U, ∂U, . . . , ∂sU) ≡ DiΨi(x,U, ∂U, . . . , ∂s−1U)
for some functions Ψi(x, U, ∂U, . . . , ∂s−1U), i = 1, . . . , n.

From Theorem 2.1, the proof of the following theorem that connects local
multipliers and local conservation laws is immediate.

Theorem 2.2. A set of non-singular local multipliers {Λσ(x, U, ∂U, . . . , ∂lU)}N
σ=1

yields a divergence expression for a DE system R{x ;u} (1) if and only if the set
of equations

EUµ(Λσ(x,U, ∂U, . . . , ∂lU)Rσ(x,U, ∂U, . . . , ∂kU)) ≡ 0, µ = 1, . . . , m, (5)

holds for arbitrary functions U(x).
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The set of equations (5) yields the set of linear determining equations to find
all sets of local conservation law multipliers of a given DE system R{x ; u} (1) by
letting l = 1, 2, . . . in (5). Since the equations (1) hold for arbitrary U(x), it follows
that they also hold for each derivative of U(x) replaced by an arbitrary function.
In particular, since derivatives of U(x) of orders higher than l can be replaced
by arbitrary functions, it follows that the linear PDE system (1) splits into an
over-determined linear system of determining equations whose solutions are the
sets of local multipliers {Λσ(x,U, ∂U, . . . , ∂lU)}N

σ=1 of the DE system R{x ;u} (1).
One can show the following [11]: Suppose each DE of a given kth order DE

system R{x ; u} (1) can be written in a solved form

Rσ[u] = ujσ

i1σ ···isσ
−Gσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N, (6)

where 1 ≤ jσ ≤ m and 1 ≤ i1σ, . . . , isσ ≤ n for each σ = 1, . . . , N ; {ujσ

i1σ···isσ
} is a

set of N linearly independent sth order leading (partial) derivatives, with the prop-
erty that none of them or their differential consequences appears in {Gσ[u]}N

σ=1.
Then, to within equivalence, all local conservation laws of the DE system R{x ; u}
(1) arise from sets of local multipliers that are solutions of the determining equa-
tions (5). [It should be noted that the assumption that a given DE system R{x ; u}
(1) can be written in a solved form (6) is the same assumption that is required
when one is finding the local symmetries of R{x ; u} (1).]

Remark 2.1. In the situation when a given DE system R{x ;u} (1) cannot be
written in a solved form (6), the multiplier approach still can be used to see local
conservation laws of (1). However, here it is possible that some local conservation
laws are missed since the corresponding divergence expressions may not satisfy
(3), since they could involve differential consequences of R{x ; u} (1).

Following from the above, a systematic procedure for the construction of local
conservation laws of a given DE system R{x ; u} (1), referred to as the direct
method, is now outlined.

• For a given kth order DE system R{x ; u} (1), seek sets of multipliers of
the form {Λσ(x,U, ∂U, . . . , ∂lU)}N

σ=1 to some specified order l. Choose the
dependence of multipliers on their arguments so that singular multipliers
do not arise. [In particular, if the given DE system is written in a solved
form (6) and is non-degenerate, the multipliers can be assumed to have
no dependence on the leading derivatives {ujσ

i1σ···isσ
} and their differential

consequences.]

• Solve the set of determining equations (5) for arbitrary U(x) to find all such
sets of multipliers.

• Find the corresponding fluxes Φi(x,U, ∂U, . . . , ∂rU) satisfying the identity

Λσ(x,U, ∂U, . . . , ∂lU)Rσ(x,U, ∂U, . . . , ∂kU) ≡ DiΦi(x,U, ∂U, . . . , ∂rU).

• Each set of multipliers and resulting fluxes yields a local conservation law
holding for all solutions u(x) of the given DE system R{x ; u} (1).
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2.1 Examples

The direct method to obtain local conservation laws is now illustrated through
two examples.

2.1.1 A nonlinear telegraph system

As a first example, consider a nonlinear telegraph system (u1 = u, u2 = v) given
by

R1[u, v] = vt − (u2 + 1)ux − u = 0, R2[u, v] = ut − vx = 0. (7)

This is a first order PDE system with leading derivatives vt and ut.
We seek all local conservation law multipliers of the form

Λ1 = ξ(x, t, U, V ), Λ2 = φ(x, t, U, V ) (8)

of the PDE system (7). In terms of Euler operators

EU =
∂

∂U
−Dx

∂

∂Ux
−Dt

∂

∂Ut
, EV =

∂

∂V
−Dx

∂

∂Vx
−Dt

∂

∂Vt
,

the determining equations (5) for the multipliers (8) become

EU [ξ(x, t, U, V )(Vt − (U2 + 1)Ux − U) + φ(x, t, U, V )(Ut − Vx)] ≡ 0,

EV [ξ(x, t, U, V )(Vt − (U2 + 1)Ux − U) + φ(x, t, U, V )(Ut − Vx)] ≡ 0,
(9)

where U(x, t) and V (x, t) are arbitrary differentiable functions. Equations (9)
split with respect to Ut, Vt, Ux, Vx to yield the over-determined linear PDE system
given by

φV − ξU = 0, φU − (U2 + 1)ξV = 0,

φx − ξt − UξV = 0, (U2 + 1)ξx − φt − UξU − ξ = 0.
(10)

The solutions of (10) are the five sets of local conservation multipliers given by

(ξ1, φ1) = (0, 1), (ξ2, φ2) = (t, x− 1
2 t2),

(ξ3, φ3) = (1,−t), (ξ4, φ4) = (ex+ 1
2
U2+V , Uex+ 1

2
U2+V ),

(ξ5, φ5) = (ex+ 1
2
U2−V ,−Uex+ 1

2
U2−V ).

Each set (ξ, φ) determines a nontrivial local conservation law DtΨ(x, t, u, v) +
DxΦ(x, t, u, v) = 0 with the characteristic form

DtΨ(x, t, U, V ) + DxΦ(x, t, U, V )

≡ ξ(x, t, U, V )R1[U, V ] + φ(x, t, U, V )R2[U, V ].
(11)
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In particular, after equating like derivative terms of (11), one has the relations

ΨU = φ, ΨV = ξ, ΦU = −(U2 + 1)ξ, ΦV = −φ, Ψt + Φx = −Uξ. (12)

For each set of local multipliers, it is straightforward to integrate equations (12)
to obtain the following five linearly independent local conservation laws of the
PDE system (7):

Dtu + Dx[−v] = 0,

Dt[(x− 1
2 t2)u + tv] + Dx[(1

2 t2 − x)v − t(1
3u3 + u)] = 0,

Dt[v − tu] + Dx[tv − (1
3u3 + u)] = 0,

Dt[ex+ 1
2
u2+v] + Dx[−uex+ 1

2
u2+v] = 0,

Dt[ex+ 1
2
u2−v] + Dx[uex+ 1

2
u2−v] = 0.

2.1.2 Korteweg-de Vries equation

As a second example, consider the KdV equation

R[u] = ut + uux + uxxx = 0. (13)

Since PDE (13) can be directly expressed in the solved form ut = g[u] =
−(uux +uxxx), without loss of generality, it follows that local multipliers yielding
local conservation laws of PDE (13) are of the form Λ = Λ(t, x, U, ∂xU, . . . , ∂l

xU),
l = 1, 2, . . ., i.e., multipliers can be assumed to depend on at most on x-derivatives
of U . This follows from the observation that through PDE (13), all t-derivatives
of u appearing in the fluxes of any local conservation law DtΨ[u] + DxΦ[u] = 0
of PDE (13) can be expressed in terms of x-derivatives of u. It is then easy
to show [3] that the resulting multipliers for the fluxes Ψ(t, x, U, ∂xU, . . . , ∂r

xU)
and Φ(t, x, U, ∂xU, . . . , ∂r

xU) must have no dependence on Ut and its derivatives.
Consequently, Λ(t, x, U, ∂xU, . . . , ∂l

xU) is a local conservation law multiplier of the
PDE (13) if and only if

EU (Λ(t, x, U, ∂xU, . . . , ∂l
xU)(Ut + UUx + Uxxx)) ≡

−DtΛ− UDxΛ−D3
xΛ + (Ut + UUx + Uxxx)ΛU

−Dx((Ut + UUx + Uxxx)Λ∂xU )

+ · · ·+ (−1)lDl
x((Ut + UUx + Uxxx)Λ∂l

xU ≡ 0

(14)

holds for an arbitrary U(x, t) where here the Euler operator

EU =
∂

∂u
− (Dt

∂

∂Ut
+ Dx

∂

∂Ux
) + D2

x

∂

∂Uxx
+ · · ·

truncates after max(3, l) x-derivatives of U . Note that the linear determining
equation (14) is of the form

α1[U ] + α2[U ]Ut + α3[U ]∂xUt + · · ·αl+2[U ]∂l
xUt ≡ 0 (15)
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where each αi[U ] depends at most on t, x, U and x-derivatives of U . Since U(x, t)
is an arbitrary function, in equation (15) each of Ut, ∂xUt, . . . , ∂

l
xUt can be treated

as independent variables, and hence αi[U ] = 0, i = 1, . . . , l + 2. Furthermore,
there is a further splitting of these l + 2 determining equations with respect to
each x-derivative of U .

Now suppose Λ = Λ(t, x, U). Then from equations (14) and (15), it follows that

(Λt + UΛx + Λxxx) + 3ΛxxUUx + 3ΛxUUU2
x + ΛUUUU3

x

+3ΛxUUxx + 3ΛUUUxUxx ≡ 0.
(16)

Equation (16) is a polynomial identity in the variables Ux, Uxx. Hence equation
(16) splits into the three equations (the other three equations are differential
consequences)

Λt + UΛx + Λxxx = 0, ΛxU = 0, ΛUU = 0,

whose solution yields the three local conservation law multipliers

Λ1 = 1, Λ2 = U, Λ3 = tU − x.

It is easy to check that these three multipliers respectively yield the divergence
expressions

Ut + UUx + Uxxx ≡ DtU + Dx(1
2U2 + Uxx),

U(Ut + UUx + Uxxx) ≡ Dt(1
2U2) + Dx(1

3U3 + UUxx − 1
2U2

x),

(tU − x)(Ut + UUx + Uxxx) ≡ Dt(1
2 tU2 − xU)

+Dx(−1
2xU2 + tUUxx − 1

2 tU2
x − xUxx + Ux),

and consequently, one obtains the local conservation laws

Dtu + Dx(1
2u2 + uxx) = 0,

Dt(1
2u2) + Dx(1

3u3 + uuxx − 1
2u2

x) = 0,

Dt(1
2 tu2 − xu) + Dx(−1

2xu2 + tuuxx − 1
2 tu2

x − xuxx + ux) = 0,

of the KdV equation (13).
From equations (14) and (15), it is easy to see that PDE (13) has no additional

multipliers of the form Λ = Λ(t, x, U, Ux) with an essential dependence on Ux.
Moreover, one can show that there is only one additional local multiplier of the
form Λ = Λ(t, x, U, Ux, Uxx), given by

Λ4 = Uxx +
1
2
U2.

Furthermore, one can show that in terms of the recursion operator

R∗[U ] = D2
x +

1
3
U +

1
3
D−1

x ◦ U ◦Dx,
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the KdV equation (13) has an infinite sequence of local conservation law multi-
pliers given by

Λ2n = (R∗[U ])nU, n = 1, 2, . . . ,

with the first two multipliers in this sequence exhibited above.

2.2 Linearizing operators and adjoint equations

Consider a given DE system R{x ; u} (1). The linearizing operator L[U ] associated
with the DE system R{x ;u} (1) is given by

Lσ
ρ [U ]V ρ =

[
∂Rσ[U ]

∂Uρ
+

∂Rσ[U ]
∂Uρ

i

Di + . . . +
∂Rσ[U ]
∂Uρ

i1...ik

Di1 · · ·Dik

]
V ρ,

σ = 1, . . . , N,

(17)

in terms of an arbitrary function V (x) = (V 1(x), . . . , V m(x)). The adjoint operator
L∗[U ] associated with the DE system R{x ;u} (1) is given by

L∗ σ
ρ [U ]Wσ =

∂Rσ[U ]
∂Uρ

Wσ −Di

(
∂Rσ[U ]

∂Uρ
i

Wσ

)
+ . . .

+(−1)kDi1 . . .Dik

(
∂Rσ[U ]
∂Uρ

i1...ik

Wσ

)
, ρ = 1, . . . , m,

(18)

in terms of an arbitrary function W (x) = (W1(x), . . . , WN (x)).
In particular, one can show that the linearizing and adjoint operators, defined

respectively through (17) and (18), satisfy the divergence relation

WσLσ
ρ [U ]V ρ−V ρL∗σ

ρ [U ]Wσ ≡ DiΨi[U ]

with

DiΨi[U ] =
k∑

q=1

∑

i1...iq

Dim

[
(−1)m−1

(
Dim+1 . . . DiqV

ρ
)×

×Di1 · · ·Dim−1

(
Wσ

∂Rσ[U ]
∂Uρ

i1...iq

)]
,

where the second sum is taken over all ordered sets of indices 1 ≤ i1 ≤ . . . ≤ im ≤
. . . ≤ iq ≤ n of independent variables x = (x1, . . . , xn).

Now let Wσ = Λσ[U ] = Λσ(x,U, ∂U, . . . , ∂lU), σ = 1, . . . , N. By direct calcula-
tion, in terms of the Euler operators defined by (4), one can show that

EUρ(Λσ[U ]Rσ[U ]) ≡ L∗σ
ρ [U ]Λσ[U ] + Fρ(R[U ]) (19)

with
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Fρ(R[U ]) =
∂Λσ[U ]
∂Uρ

Rσ[U ]−Di

(
∂Λσ[U ]
∂Uρ

i

Rσ[U ]
)

+ . . .

+(−1)lDi1 . . . Dil

(
∂Λσ[U ]
∂Uρ

i1....il

Rσ[U ]

)
, ρ = 1, . . . ,m.

(20)

From expression (19), it immediately follows that {Λσ[U ]}N
σ=1 yields a set of

local conservation law multipliers of the DE system R{x ; u} (1) if and only if the
right hand side of (19) vanishes for arbitrary U(x). Now suppose each multiplier
is nonsingular for each solution U(x) = u(x) of the DE system (1). Since then
the expression (20) vanishes for each solution U(x) = u(x) of DE system R{x ; u}
(1), it follows that every set of nonsingular multipliers {Λσ[U ]}N

σ=1 of R{x ; u} is
a solution of its adjoint linearizing DE system when U(x) = u(x) is a solution of
the DE system R{x ; u}, i.e.,

L∗σ
ρ [u]Λσ[u] = 0, ρ = 1, . . . , m. (21)

In particular, the following two results have been proved.

Theorem 2.3. For a given DE system R{x ; u} (1), each set of local conservation
law multipliers {Λσ[U ] = Λσ(x,U, ∂U, . . . , ∂lU)}N

σ=1 satisfies the identity

L∗σ
ρ [U ]Λσ[U ] +

∂Λσ[U ]
∂Uρ

Rσ[U ]−Di

(
∂Λσ[U ]
∂Uρ

i

Rσ[U ]
)

+ · · ·+ (−1)lDi1 · · ·Dil

(
∂Λσ[U ]
∂Uρ

i1···il
Rσ[U ]

)
≡ 0, ρ = 1, . . . , m,

(22)

holding for arbitrary functions U(x) = (U1(x), . . . , Um(x)) where the components
{L∗σ

ρ [U ]} of the adjoint operator of the linearizing operator (Fréchet derivative)
for the DE system (1) are given by expressions (18).

Corollary 2.1. For any solution U(x) = u(x) = (u1(x), . . . , um(x)) of a given
DE system R{x ; u} (1), each set of local conservation law multipliers {Λσ[U ]}N

σ=1

satisfies the adjoint linearizing system (21), where {L∗σ
ρ [U ]} is given by the com-

ponents of the adjoint operator (18).

The identity (22) provides the explicit general form of the multiplier determin-
ing system (5) in Theorem 2.2. In general, the adjoint system (21) is strictly a
subset of system (5) after one takes into account the splitting of (22) with respect
to a set of leading derivatives for Rσ[U ], σ = 1, . . . , N.

2.3 Determination of fluxes of conservation laws from multipliers

There are several ways of finding the fluxes of local conservation laws from a
known set of multipliers.
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A first method is a direct method that has been illustrated through the nonlin-
ear telegraph system considered in Section 2.1.1 where one converts (3) directly
into the set of determining equations to be solved for the fluxes Φi[U ]. This method
is easy to implement for simple types of conservation laws.

A second method is another direct method that has been illustrated through
the KdV equation considered in Section 2.1.2 where one simply manipulates (3)
to find the fluxes Φi[U ].

A third method [1–3] is now presented that allows one to find the fluxes in the
case of complicated forms of multipliers and/or DE systems through an integral
(homotopy) formula:

For each multiplier Λσ[U ] = Λσ(x,U, ∂U, . . . , ∂lU), one introduces the corre-
sponding linearization operator

(LΛ)σρ[U ]Ṽ ρ =

[
∂Λσ[U ]
∂Uρ

+
∂Λσ[U ]
∂Uρ

i

Di + . . . +
∂Λσ[U ]
∂Uρ

i1...il

Di1 . . . Dil

]
Ṽ ρ,

σ = 1, . . . , N,

(23)

and its adjoint

(L∗Λ)σρ[U ]W̃ σ =
∂Λσ[U ]
∂Uρ

W̃ σ −Di

(
∂Λσ[U ]
∂Uρ

i

W̃ σ

)

+ . . . + (−1)kDi1 . . . Dil

(
∂Λσ[U ]
∂Uρ

i1...il

W̃ σ

)
, ρ = 1, . . . , m,

(24)

acting respectively on arbitrary functions Ṽ (x) = (Ṽ 1(x), . . . , Ṽ m(x)) and W̃ (x) =
(W̃ 1(x), . . . , W̃N (x)).

It is straightforward to show that the operators defined by (17), (18), (23), and
(24) satisfy the following divergence identities:

WσLσ
ρ [U ]V ρ − V ρL∗σ

ρ [U ]Wσ ≡ DiS
i[V, W ; R[U ]], (25)

W̃ σ(LΛ)σρ[U ]Ṽ ρ − Ṽ ρ(L∗Λ)σρ[U ]W̃ σ ≡ DiS̃
i[Ṽ , W̃ ; Λ[U ]], (26)

with Si[V,W ;R[U ]] and Si[Ṽ , W̃ ; Λ[U ]] defined by corresponding terms in the
expressions

DiS
i[V, W ; R[U ]] =

k∑

q=1

∑

i1...iq

Dim

[
(−1)m−1

(
Dim+1 . . .DiqV

ρ
)×

×Di1 · · ·Dim−1

(
Wσ

∂Rσ[U ]
∂Uρ

i1...iq

)]
,

(27)

DiS̃
i[Ṽ , W̃ ; Λ[U ]] =

l∑

q=1

∑

i1...iq

Dim

[
(−1)m−1

(
Dim+1 . . .Diq Ṽ

ρ
)
×

×Di1 · · ·Dim−1

(
W̃ σ ∂Λσ[U ]

∂Uρ
i1...iq

)]
.

(28)
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In equations (27) and (28), k is the order of the given DE system (1), l is the
maximal order of the derivatives appearing in the multipliers, and the second
sums are taken over all ordered sets of indices 1 ≤ i1 ≤ . . . ≤ im ≤ . . . ≤ iq ≤ n
of independent variables x = (x1, . . . , xn).

Let U(λ) = U(x)+ (λ− 1)V (x), where U(x) = (U1(x), . . . , Um(x)) and V (x) =
(V 1(x), . . . , V m(x)) are arbitrary functions, and λ is a scalar parameter. Replacing
U by U(λ) in the conservation law identity (3), one obtains

∂

∂λ
(Λσ[U(λ)]R

σ[U(λ)]) ≡
∂

∂λ
DiΦi[U(λ)] = Di

(
∂

∂λ
Φi[U(λ)]

)
. (29)

The left-hand side of (29) can then be expressed in terms of the linearizing oper-
ators (17) and (23) as follows:

∂

∂λ
(Λσ[U(λ)]R

σ[U(λ)]) = Λσ[U(λ)]L
σ
ρ [U(λ)]V

ρ + Rσ[U(λ)](LΛ)σρ[U(λ)]V
ρ.

From (25) and (26) with Wσ = Λσ[U(λ)] and W̃ σ = Rσ[U(λ)], respectively, one
obtains

∂

∂λ
(Λσ[U(λ)]Rσ[U(λ)]) = V ρL∗σ

ρ [U(λ)]Λσ[U(λ)] + DiS
i[V, Λ[U(λ)];R[U(λ)]]

+V ρ(L∗Λ)σρ[U(λ)]Rσ[U(λ)] + DiS̃
i[V, R[U(λ)]; Λ[U(λ)]]

= Di

(
Si[V,Λ[U(λ)]; R[U(λ)]] + S̃i[V, R[U(λ)]; Λ[U(λ)]]

)
,

(30)

where the last equality follows from the identity (22) holding for local conservation
law multipliers in Theorem 2.3.

Comparing (29) and (30), one finds that

Di

(
∂

∂λ
Φi[U(λ)]

)
= Di

(
Si[V, Λ[U(λ)];R[U(λ)]] + S̃i[V, R[U(λ)]; Λ[U(λ)]]

)
,

leading to

∂

∂λ
Φi[U(λ)] = Si[V, Λ[U(λ)]; R[U(λ)]] + S̃i[V, R[U(λ)]; Λ[U(λ)]], (31)

up to fluxes of a trivial conservation law. Now let V (x) = U(x) − Ũ(x), for an
arbitrary function Ũ(x) = (Ũ1(x), . . . , Ũm(x)). Then U(λ) = λU(x)+(1−λ)Ũ(x).
Integrating (31) with respect to λ from 0 to 1, one finds that

Φi[U ] = Φi[Ũ ] +

1∫

0

(Si[U − Ũ , Λ[λU + (1− λ)Ũ ]; R[λU + (1− λ)Ũ ]]

+S̃i[U − Ũ , R[λU + (1− λ)Ũ ]; Λ[λU + (1− λ)Ũ ]]) dλ,

i = 1, . . . , n.

(32)

In summary, the following theorem has been proven.
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Theorem 2.4. For a set of local conservation law multipliers {Λσ[U ]}N
σ=1 of a

DE system R{x ; u} (1), the corresponding fluxes are given by the integral for-
mula (32).

In (32), Ũ(x)is an arbitrary function of x, chosen so that the integral converges.
Different choices of Ũ(x) yield fluxes of equivalent conservation laws, i.e., conser-
vation laws that differ by trivial divergences. One commonly chooses Ũ(x) = 0
(provided that the integral (32) converges). Once Ũ(x) has been chosen, the
corresponding fluxes {Φi[Ũ ]}N

i=1 can be found by direct integration through the
divergence relation DiΦi[Ũ ] = Λσ[Ũ ]Rσ[Ũ ] = F (x). For example, one may choose
Φ1[Ũ ] =

∫
F (x) dx1, Φ2[Ũ ] = . . . = Φn[Ũ ] = 0.

Finally, a fourth method [12] replaces the integral formula (32) by a simpler
algebraic formula that applies to DE systems R{x ; u} that have scaling symme-
tries.

2.4 Self-adjoint DE systems

An especially interesting situation arises when the linearizing operator (Fréchet
derivative) L[U ] of a given DE system (1) is self-adjoint.

Definition 2.4. Let L[U ], with its components Lσ
ρ [U ] given by (17), be the lin-

earizing operator associated with a DE system (1). The adjoint operator of L[U ]
is L∗[U ], with its components L∗σ

ρ [U ] given by (18). L[U ] is a self-adjoint operator
if and only if L[U ] ≡ L∗[U ], i.e., Lσ

ρ [U ] ≡ L∗σ
ρ [U ], σ, ρ = 1, . . . ,m.

It is straightforward to see that if a DE system, as written, has a self-adjoint
linearizing operator, then

• the number of dependent variables appearing in the system must equal the
number of equations appearing in the system, i.e., N = m;

• if the given DE system is a scalar equation, the highest-order derivative
appearing in it must be of even order.

The converse of this statement is false. For example, consider the linear heat
equation ut− uxx = 0. The linearizing operator of this PDE is obviously given by
L = Dt −D2

x, with adjoint operator L∗ = −Dt −D2
x 6 ≡L.

Most importantly, one can show that a given DE system, as written, has a
variational formulation if and only if its associated linearizing operator is self-
adjoint [8–10].

If the linearizing operator associated with a given DE system is self-adjoint,
then each set of local conservation law multipliers yields a local symmetry of the
given DE system. In particular, one has the following theorem.

Theorem 2.5. Consider a given DE system R{x ; u} (1) with N = m. Sup-
pose its associated linearizing operator L[U ], with components (17), is self-adjoint.
Suppose {Λσ(x,U, ∂U, . . . , ∂lU)}m

σ=1 is a set of local conservation law multi-
pliers of the DE system (1). Let ησ(x, u, ∂u, . . . , ∂lu) = Λσ(x, u, ∂u, . . . , ∂lu),
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σ = 1, . . . , m, where U(x) = u(x) is any solution of the DE system R{x ; u} (1).
Then

ησ(x, u, ∂u, . . . , ∂lu)
∂

∂uσ
(33)

is a local symmetry of the DE system R{x ; u} (1).

Proof. From equations (21) with L[U ] = L∗[U ], it follows that in terms of the
components (17) of the associated linearizing operator L[U ], one has

Lσ
ρ [u]Λσ(x, u, ∂u, . . . , ∂lu) = 0, ρ = 1, . . . , m, (34)

where u = Θ(x) is any solution of the DE system R{x ;u} (1). But the set of
equations (34) is the set of determining equations for a local symmetry

Λσ(x, u, ∂u, . . . , ∂lu)
∂

∂uσ

of the DE system R{x ; u} (1). Hence, it follows that (33) is a local symmetry of
the DE system R{x ; u} (1). ¥

The converse of Theorem 2.5 is false. In particular, suppose

ησ(x, u, ∂u, . . . , ∂lu)
∂

∂uσ

is a local symmetry of a given DE system R{x ; u} (1) with a self-adjoint linearizing
operator L[U ]. Let Λσ(x,U, ∂U, . . . , ∂lU) = ησ(x,U, ∂U, . . . , ∂lU), σ = 1, . . . ,m,
where U(x) = (U1(x), . . . , Um(x)) is an arbitrary function. Then it does not
necessarily follow that {Λσ(x,U, ∂U, . . . , ∂lU)}m

σ=1 is a set of local conservation
law multipliers of the DE system (1). This can be seen as follows: in the self-
adjoint case, the set of local symmetry determining equations is a subset of the
set of local multiplier determining equations. Here each local symmetry yields a
set of local conservation law multipliers if and only each solution of the set of local
symmetry determining equations also solves the remaining set of local multiplier
determining equations.

3 Noether’s theorem

In 1918, Noether [5] presented her celebrated procedure (Noether’s theorem) to
find local conservation laws for systems of DEs that admit a variational principle.
When a given DE system admits a variational principle, then the extremals of an
action functional yield the given DE system (the Euler–Lagrange equations). In
this case, Noether showed that if one has a point symmetry of the action functional
(action integral), then one obtains the fluxes of a local conservation law through
an explicit formula that involves the infinitesimals of the point symmetry and the
Lagrangian (Lagrangian density) of the action functional.

We now present Noether’s theorem and its generalizations due to Bessel-Hagen [6]
and Boyer [7].
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3.1 Euler–Lagrange equations

Consider a functional J [U ] in terms of n independent variables x = (x1, . . . , xn)
and m arbitrary functions U = (U1(x), . . . , Um(x)) and their derivatives to order
k, defined on a domain Ω,

J [U ] =
∫

Ω
L[U ]dx =

∫

Ω
L[(x, U, ∂U, . . . , ∂kU)dx. (35)

The function L[U ] = L[(x,U, ∂U, . . . , ∂kU) is called a Lagrangian and the func-
tional J [U ] is called an action integral. Consider an infinitesimal change of U
given by U(x) → U(x) + εv(x) where v(x) is any function such that v(x) and
its derivatives to order k – 1 vanish on the boundary ∂Ω of the domain Ω. The
corresponding change (variation) in the Lagrangian L[U ] is given by

δL = L[(x,U + εv, ∂U + ε∂v, . . . , ∂kU + ε∂kv)− L[(x, U, ∂U, . . . , ∂kU)

= ε

(
∂L[U ]
∂Uσ

vσ +
∂L[U ]
∂Uσ

j

vσ
j + · · ·+ ∂L[U ]

∂Uσ
j1···jk

vσ
j1···jk

)
+ O(ε2).

Then after repeatedly using integration by parts, one can show that

δL = ε(vσEUσ(L[U ]) + DlW
l[U, v]) + O(ε2), (36)

where EUσ is the Euler operator with respect to Uσ and

W l[U, v] = vσ

(
∂L[U ]
∂Uσ

l

+ · · ·+ (−1)k−1Dj1 · · ·Djk−1

∂L[U ]
∂Uσ

lj1···jk−1

)

+vσ
j1

(
∂L[U ]
∂Uσ

j1l

+ · · ·+ (−1)k−2Dj2 · · ·Djk−1

∂L[U ]
∂Uσ

j1lj2···jk−1

)

+ · · ·+ vσ
j1···jk−1

∂L[U ]
∂Uσ

j1j2···jk−1l

.

(37)

The corresponding variation in the action integral J [U ] is given by

δJ = J [U + εv]− J [U ] =
∫
Ω δLdx

= ε
∫
Ω (vσEUσ(L[U ]) + DlW

l[U, v])dx + O(ε2)

= ε(
∫
Ω vσEUσ(L[U ])dx +

∫
∂Ω W l[U, v]nldS) + O(ε2)

(38)

where
∫
∂Ω represents the surface integral over the boundary ∂Ω of the domain Ω

with n = (n1, . . . nn) being the unit outward normal vector to ∂Ω. From (37), it
is evident that each W l[U, v] vanishes on ∂Ω, and hence

∫
∂Ω W l[U, v]nldS = 0.

Hence if U = u(x) extremizes the action integral J [U ], then the O(ε) term of
δJ must vanish so that

∫
Ω vσEuσ(L[u])dx = 0 for an arbitrary v(x) defined on the
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domain Ω. Thus if U = u(x) extremizes the action integral (35), then u(x) must
satisfy the Euler–Lagrange equations

Euσ(L[u]) =
∂L[u]
∂uσ

+ · · ·+ (−1)kDj1 · · ·Djk

∂L[u]
∂uσ

j1···jk

= 0, σ = 1, . . . , m. (39)

Hence, the following theorem has been proved.

Theorem 3.1. If a smooth function U(x) = u(x) is an extremum of an action
integral J [U ] =

∫
Ω L[U ]dx with L[U ] = L(x,U, ∂U, . . . , ∂kU), then u(x) satisfies

the Euler–Lagrange equations (39).

3.2 Noether’s formulation of Noether’s theorem

We now present Noether’s formulation of her famous theorem. In this formulation,
the action integral J [U ] (35) is required to be invariant under the one-parameter
Lie group of point transformations

(x∗)i = xi + εξi(x,U) + O(ε2), i = 1, . . . , n,
(U∗)µ = Uµ + εηµ(x,U) + O(ε2), µ = 1, . . . , m,

(40)

with corresponding infinitesimal generator given by

X = ξi(x,U)
∂

∂xi
+ ην(x,U)

∂

∂Uν
, (41)

Invariance holds if and only if
∫
Ω∗ L[U∗]dx∗ =

∫
Ω L[U ]dx where Ω∗ is the image of

Ω under the point transformation (40). The Jacobian J of the transformation (40)
is given by J = det(Di(x∗)j) = 1+εDiξ

i(x,U)+O(ε2). Then dx∗ = Jdx. Moreover,
since (40) is a Lie group of transformations, it follows that L[U∗] = eεX(k)

L[U ] in
terms of the kth extension of the infinitesimal generator (41). Consequently, in
Noether’s formulation, the one-parameter Lie group of point transformations (40)
is a point symmetry of J [U ] (35) if and only if

∫

Ω
(JeεX(k) − 1)L[U ]dx = ε

∫

Ω
(L[U ]Diξ

i(x,U) + X(k)L[U ])dx + O(ε2) (42)

holds for arbitrary U(x) where X(k) is the kth extended infinitesimal generator
with U replacing u. Hence, if J [U ] (35) has the point symmetry (40), then the
O(ε) term in (42) vanishes, and thus one obtains the identity

L[U ]Diξ
i(x,U) + X(k)L[U ] ≡ 0. (43)

The one-parameter Lie group of point transformations (40) is equivalent to the
one-parameter family of transformations

(x∗)i = xi, i = 1, . . . , n,
(U∗)µ = Uµ + ε[ηµ(x,U)− Uµ

i ξi(x, U)] + O(ε2), µ = 1, . . . , m.
(44)
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Under the transformation (44), the corresponding infinitesimal change U(x) →
U(x) + εv(x) has components vµ(x) = η̂µ[U ] = ηµ(x,U)− Uµ

i ξi(x,U) in terms of
the transformations (44). Moreover, from the group property of (44), it follows
that

δL = εX̂(k)L[U ] + O(ε2) (45)

where X̂(k) is the kth extension of the infinitesimal generator X̂ = η̂µ[U ] ∂
∂Uµ

yielding the transformation (44). Thus
∫

Ω
δLdx = ε

∫

Ω
X̂(k)L[U ]dx + O(ε2). (46)

Consequently, after comparing expression (46) and expression (38) with vµ(x) =
η̂µ[U ] = ηµ(x,U)− Uµ

i ξi(x,U), it follows that

X̂(k)L[U ] ≡ η̂µ[U ]EUµ(L[U ]) + DlW
l[U, η̂[U ]] (47)

where W l[U, η̂[U ]] is given by expression (37) with the obvious substitutions.
The proof of the following theorem is obtained by direct calculation.

Theorem 3.2. Let X(k) be the kth extended infinitesimal generator of the one-
parameter Lie group of point transformations (40) and let X̂(k) be the kth extended
infinitesimal generator of the equivalent one-parameter family of transformations
(44). Let F [U ] = F (x,U, ∂U, . . . , ∂kU) be an arbitrary function of its arguments.
Then the following identity holds:

X(k)F [U ] + F [U ]Diξ
i(x,U) ≡ X̂(k)F [U ] + Di(F [U ]ξi(x,U)). (48)

Putting all of the above together, one obtains the following theorem.

Theorem 3.3 (Noether’s formulation of Noether’s theorem). Suppose a
given DE system R{x ; u} (1) is derivable from a variational principle, i.e., the
given DE system is a set of Euler–Lagrange equations (39) whose solutions u(x)
are extrema U(x) = u(x) of an action integral J [U ] (35) with Lagrangian L[U ].
Suppose the one-parameter Lie group of point transformations (40) is a point sym-
metry of J [U ]. Let W l[U, v] be defined by (37) for arbitrary functions U(x), v(x).
Then

(1) The identity

η̂µ[U ]EUµ(L[U ]) ≡ −Di(ξi(x,U)L[U ] + W i[U, η̂[U ]]) (49)

holds for arbitrary functions U(x), i.e., {η̂µ[U ]}m
µ=1 is a set of local conser-

vation law multipliers of the Euler-Lagrange system (39);

(2) The local conservation law

Di(ξi(x, u)L[u] + W i[u, η̂[u]]) = 0 (50)

holds for any solution u = Θ(x) of the Euler-Lagrange system (39).
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Proof. Let F [U ] = L[U ] in the identity (48). Then from the identity (43), one
obtains

X̂(k)L[U ] + Di(L[U ]ξi(x,U)) ≡ 0 (51)

holding for arbitrary functions U(x). Substitution for X̂(k)L[U ] in (51) through
(47) yields (49). If U(x) = u(x) solves the Euler-Lagrange system (39), then the
left-hand side of equation (49) vanishes. This yields the conservation law (50). ¥

3.3 Boyer’s formulation of Noether’s theorem

Boyer [7] extended Noether’s theorem to enable one to conveniently find conser-
vation laws arising from invariance under higher-order transformations by gen-
eralizing Noether’s definition of invariance of an action integral J [U ] (35). In
particular, under the following definition, an action integral J [U ] (35) is invariant
under a one-parameter higher-order local transformation if its integrand L[U ] is
invariant to within a divergence under under such a transformation.

Definition 3.1. Let

X̂ = η̂µ(x, U, ∂U, . . . , ∂sU)
∂

∂Uµ
(52)

be the infinitesimal generator of a one-parameter higher-order local transformation

(x∗)i = xi, i = 1, . . . , n,
(U∗)µ = Uµ + εη̂µ(x,U, ∂U, . . . , ∂sU) + O(ε2), µ = 1, . . . , m,

(53)

with its extension to all derivatives denoted by X̂∞. Let

η̂µ[U ] = η̂µ(x,U, ∂U, . . . , ∂sU).

The transformation (53) is a local symmetry of J [U ] (35) if and only if

X̂∞L[U ] ≡ DiA
i[U ] (54)

holds for some set of functions Ai[U ] = Ai(x,U, ∂U, . . . , ∂rU), i = 1, . . . , n.

Definition 3.2. A local transformation with infinitesimal generator (52) that is
a local symmetry of J [U ] (35) is called a variational symmetry of J [U ].

The proof of the following theorem follows from the property of Euler operators
annihilating divergences.

Theorem 3.4. A variational symmetry with infinitesimal generator (52) of the
action integral J [U ] (35) yields a local symmetry with infinitesimal generator X̂ =
η̂µ(x, u, ∂u, . . . , ∂su) ∂

∂uµ of the corresponding Euler-Lagrange system (39).

The following theorem generalizes Noether’s formulation of her theorem.
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Theorem 3.5 (Boyer’s generalization of Noether’s theorem). Suppose a
given DE system R{x ; u} (1) is derivable from a variational principle, i.e., the
given DE system is a set of Euler–Lagrange equations (39) whose solutions u(x)
are extrema U(x) = u(x) of an action integral J [U ] (35) with Lagrangian L[U ].
Suppose a local transformation with infinitesimal generator (52) yields a varia-
tional symmetry of J [U ]. Let W l[U, v] be defined by (37) for arbitrary functions
U(x), v(x). Then

(1) The identity

η̂µ[U ]EUµ(L[U ]) ≡ Di(Ai[U ]−W i[U, η̂[U ]]) (55)

holds for arbitrary functions U(x), i.e., {η̂µ[U ]}m
µ=1 is a set of local conser-

vation law multipliers of the Euler-Lagrange system (39);

(2) The local conservation law

Di(W i[u, η̂[u]]−Ai[u]) = 0 (56)

holds for any solution u = Θ(x) of the Euler-Lagrange system (39).

Proof. For a local transformation with infinitesimal generator (52), it follows
that the corresponding infinitesimal change U(x) → U(x)+εv(x) has components
vµ(x) = η̂µ[U ]. Consequently, equation (45) becomes

δL = εX̂∞L[U ] + O(ε2).

But from (36) it follows that

δL = ε(η̂µ[U ]EUµ(L[U ]) + Di(W i[U, η̂[U ]])) + O(ε2).

Hence it immediately follows that

X̂∞L[U ] = η̂µ[U ]EUµ(L[U ]) + Di(W i[U, η̂[U ]]) (57)

holds for arbitrary functions U(x). Since the local transformation with infinitesi-
mal generator (52) is a variational symmetry of J [U ] (35), it follows that equation
(54) holds. Substitution for X̂∞L[U ] in (57) through (54) yields the identity (55).
If U(x) = u(x) solves the Euler-Lagrange system (39), then the left-hand side of
equation (55) vanishes. This yields the conservation law (56). ¥

Theorem 3.6. If a conservation law is obtained through Noether’s formulation
(Theorem 3.3), then the conservation law can be obtained through Boyer’s formu-
lation (Theorem 3.5).

Proof. Suppose the one-parameter Lie group of point transformations (40) yields
a conservation law. Then the identity (51) holds. Consequently,

X̂(k)L[U ] = X̂∞L[U ] = DiA
i[U ] (58)

where Ai[U ] = −Di(L[U ]ξi(x,U). But equation (58) is just the condition for
the one-parameter Lie group of point transformations (40) to be a variational
symmetry of J [U ] (35). Consequently, one obtains the same conservation law
from Boyer’s formulation. ¥
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4 Limitations of Noether’s theorem and consequent
advantages of the direct method

There are several limitations inherent in using Noether’s theorem to find local
conservation laws for a given DE system R{x ; u}. First of all, it is restricted to
variational systems. Consequently, the linearizing operator (Fréchet derivative)
for R{x ; u}, as written, must be self-adjoint, which implies that R{x ; u} must be
of even order ( if it is a scalar PDE), and the number of PDEs must be the same
as the number of dependent variables appearing in R{x ; u}. [In particular, this
can be seen from comparing expressions (17) and (18).] In addition, one must
find an explicit Lagrangian L[U ] whose Euler–Lagrange equations yield R{x ; u}.

There is also the difficulty of finding the variational symmetries for a given
variational DE system R{x ; u}. First, for the given DE system, one must de-
termine local symmetries depending on derivatives of dependent variables up to
some chosen order. Second, one must find an explicit Lagrangian L[U ] and check
if each symmetry of the given DE system leaves invariant the Lagrangian L[U ] to
within a divergence, i.e., if a symmetry is indeed a variational symmetry.

Finally, the use of Noether’s theorem to find local conservation laws is coordi-
nate dependent since the action of a point (contact) transformation can transform
a DE having a variational principle to one that does not have one. On the other
hand, it is known that conservation laws are coordinate-independent in the sense
that a point (contact) transformation maps a conservation law into a conservation
law [13], and therefore it follows that an ideal method for finding conservation laws
should be coordinate-independent.

Artifices may make a given DE system variational. Such artifices include:

• The use of multipliers. As an example, the PDE utt + 2uxuxx + u2
x = 0, as

written, does not admit a variational principle since its linearized equation
vtt+2uxvxx+(2uxx+2ux)vx = 0 is not self-adjoint. However, the equivalent
PDE ex[utt + 2uxuxx + u2

x] = 0, as written, is self-adjoint!
• The use of a contact transformation of the variables. As an example, the

PDE

exutt − e3x(u + ux)2(u + 2ux + uxx) = 0, (59)

as written, does not admit a variational principle, since its linearized PDE
and the adjoint PDE are different. But the point transformation x∗ =
x, t∗ = t, u∗(x∗, t∗) = y(x, t) = exu(x, t), maps the PDE (59) into the self-
adjoint PDE ytt− (yx)2yxx = 0, which is the Euler-Lagrange equation for an
extremum Y = y of the action integral with Lagrangian L[Y ] = 1

2Y 2
t − 1

12Y 4
x .

• The use of a differential substitution. As an example, the KdV equation
(13) as written, obviously does not admit a variational principle since it is
of odd order. But the well-known differential substitution u = vx yields the
related transformed KdV equation vxt+vxvxx+vxxxx = 0, which arises from
the Lagrangian L[V ] = 1

2V 2
xx − 1

6V 3
x − 1

2VxVt.
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• The use of an artificial additional equation. For example, the linear heat
equation ut−uxx = 0 is not self-adjoint since its adjoint equation is given by
wt+wxx = 0. However the decoupled PDE system ut−uxx = 0, ũt+ũxx = 0
is evidently self-adjoint! [In general, the formal system, obtained through
appending any given DE system by the adjoint of its linearized system, is
self-adjoint.]

The direct method for finding local conservation laws is free of all of the above
problems. It is directly applicable to any DE system, whether or not it is varia-
tional. Moreover, it does not require the knowledge of a Lagrangian, whether or
not one exists. Indeed, under the direct method, variational and non-variational
DE systems are treated in the same manner.

The direct method is naturally coordinate-independent. This follows from
the fact that a point (contact) transformation maps a conservation law into a
conservation law, and hence either form of a conservation law (in original or
transformed variables) will arise from corresponding sets of multipliers, which can
be found by the direct method in either coordinate system.

Finding conservation laws through the direct method is computationally more
straightforward than through Noether’s theorem even when a given DE system is
variational. One simply writes down the set of linear determining equations (5)
holding for arbitrary functions U(x), which in the case of a variational system,
include the symmetry determining equations as a subset of the multiplier de-
termining equations. Hence, the resulting linear determining equations for local
multipliers are usually not as difficult to solve as those for local symmetries since
this determining system is more over-determined in the variational case.

On the other hand, if a given DE system is variational and one has obtained the
Lagrangian for the DE system, then it is worthwhile to combine the direct method
with Noether’s theorem as follows. First, use the direct method to find the local
conservation law multipliers and hence the corresponding variational symmetries.
Second, for each variational symmetry, find the corresponding divergence term
DiA

i[U ] that arises from the use of Boyer’s formulation of the extended Noether’s
theorem. Third, use expression (37) in conjunction with Boyer’s formula (56) to
find the resulting local conservation law.

Many examples illustrating the use of the direct method to find local conser-
vation laws, including examples that compare the use of Noether’s theorem and
the direct method (for PDE systems that admit a variational formulation) appear
in [11]. A comparison of the local symmetry and local conservation law structure
for non-variational PDE systems appears in [11,14].
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